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We introduce a new technique for constrained reconstructions of
current distributions from magnetic field maps. By utilizing the finite
element method, we can incorporate as much prior information as
possible into the solution of the inverse problem, thereby improving
the quality of a current image. In addition to constraining the current
within the correct spatial region, boundary conditions can also be
incorporated into the inverse solution. We also introduce a tech-
nique to avoid the difficulties in reconstruction of a discontinuous
function, as occurs when electric current is injected into a conduct-
ing sample‘ @ 1995 Academic Press, fnc.

INTRODUCTION

In general, a two-dimensional current distribution has a cur-
rent density J(x, ¥) distributed over the xy plane and produces
a vector magnetic field B{x, y, z) above the distribution. A
magnetomeler can be scanned over the distribution to create a
map of one or more components of the magnetic field |1, 21.
From this map, we wish to reconstruct the corresponding current
distribution, i.e.. to salve a two-dimensional magnetic inverse
problem, Beeause of the typically ill-conditioned nature of the
magaetic inverse problem, a variciy ol approaches has been
developed, including spatial filtering [3], lead ficld analysis (4],
and constrained reconstruction [5].

Our study [6] shows that il a current source has no actual
boundary, the spatial filtering technique [3] provides an
excellent way (o estimate the current pattern. However, the
spatial filtering technique [3] cannot readily incorporate any
baundary conditions because of restrictions in the traditional
algorithm for the inverse Fourier transformation. The lead
field analysis introduced by loannides [4] provides a method
to constrain the current-imaging space, However, because
the lead field functions are defined over all space by using
the « priori probability density function w(r), lead field
analysis can only incorporate a constraint condition, but not
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boundary conditions such as the specification that current
can only flow tangentially to an insulating boundary. Second,
the lead field interpolation functions are neither complete
nor orthogonal, and this approach can only recover the
components of the current distribution to which the pickup
coil is sensitive. Therefore, the reconstructions are sensitive
to the choice of the measurement locations and, hence, the
lead field functions.

Constrained reconstruction [5] was originally proposed to
solve the unbounded inverse Fourier transform problem. This
method used a series of boxcar functions as the interpolation
functions to represent the original function, so that the solution
of the inverse Fourier transform is bounded. Because con-
strained reconstruction can eliminate the two drawbacks of lead
field analysis, we extended this approach to solve a general
integral equation which is often encountered in an inverse calcu-
lation. To have more flexibility in our mathematical modeling,
we choose the finite element method which can readily incorpo-
rate @ priori information about the object into the solution,
such as the geometry of the current source, discontinuities, and
houndary conditions.

In this paper, we Grst explain the basic idea of the finite
clement method and how it can be used to solve our current
imaging problem. Then we apply this method to forward and
inverse simulations. The results are compared to those obtained
by using an unconstrained filtering technique. Finally, as an
example that illustrates how the finite element method can
help us solve more complex imaging problems, we use it to
reconstruct the current distribution produced by point injection
of current into a square plate and, in doing so, show how to
overcome the elfect of the current discontinuities at the current
injection points.

THE FINITE ELEMENT METHOD (FEM)

According to the law of Biot-Savart, the z component of the
magnetic field from a two-dimensional current distribution
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FIG. 1. The geometry of the two-dimensional system, showing the two-
dimensional finite element grid. The current density J(x, ) is defined over the
grid; the magnetic field is measured at a height z above the plane.

J(x’, y"yin the x'y’ plane at z' = 0 obeys the equation

Bx,y,z

e (L0~ ) ~ Iy Yo = Xy
4 (= XV + (y -y + 27" '

(1

In order to reconstruct the current image J from the magnetic
field data recorded in the xy plane at a height z above the
current distribution, we section the current source space into a
mesh of discrete elements as shown in Fig. 1, Inside each
element we can represent the behavior of the current distribu-
tions in terms of the interpolation or shape functions as

JE=D SENH, Y
: 2)
I =2, SNy,
I

where {N*} are the two-dimensional interpolation functions for
the kth element, {4, $4} is a set of the nodal values that need
to be determined, and j is the index for all interpolation functions
in a single element. Substituting Eq. (2) into Eq. (1) and sum-
ming up all the elements, we obtain a set of linear equations

[B.]= ; (A% ILF5] — A% 11F51, 3

where the subscript i stands for the ith measurement and

Nk(xr,y!)(y o y.’) dxidyl
P ] / !
Azmj 477[.[(-0 [(.X,- _xr)z + (yl' 7_))’)2 + zi]3f2 (4)
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NHx', vy — £ dx'dy’
k. _— Eg I ?
A:h_w 41‘IJJU¢) [(xl _ xf)z + (y.‘ _ y-')Z + 32]3.'2. (5)

Because the z component of the magnetic field is related to
both the X and y components of the current density, the solution
of the above equations is, in general, highly singular and unsta-
ble. By incorporating the current continuity condition

V-I=0 ©)

we can solve for the coefficients of the expansion functions,
even if only the z component of the magnetic field is available.

The calculation of the matrices A,,, A,,, and their inverses
consumes much computer time. Fortunately the matrices A,
and A, , only depend on the geometry of the finite element mesh
and the measurement arrangement. Thus, if the set of positions
of the sample relative to the pickup coil remains unchanged,
the coefficient matrices A,, and A, , of the linear equation will
need to be calculated only once. We can compute and save the
matrices A_, and A, for different experimental setups and recall
them as required. Once the matrices A, and A, are calculated,
it only takes a few minutes to obtain the solutions on a mod-
est workstation.

We can derive the reconstruction equations for the other two
components of the magnetic field, B, and B,, by the same
approach. According to the law of Biot-Savart, the x and y
components of the magnetic fields are related to the current
density by

JAx's ¥ )z dx'dy’
Py oy P

ﬂ fJJ(I'!_vr)Z dx,dyr
Amd [x =XV + (y =y + 7P

Bix,y. 2} = £a
47rj [(x — )

By{x,y,2) =

and the corresponding matrix equations about the nodal val-
ues are

(Bl = [AL 18, (8)
k

(B.] = E [ALALEL, &)
%

where
H =t [ MOy
Al Jw (g — ¥+ (i — Y+ AP

p=to [ MU yeddy
M) Jwlln - XY + (= y P+ P

(10)

Note that the matrices A, , and A,, are identical to each other
except they have the opposite sign. From Eqgs. (8) and (9), we
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see that one tangential component of the magnetic field is
related only to another component of the current density. By
incorporating the continuity condition Eq. (6), it is still possible
to reconstruct the whole current pattern from either the x or y
components of the magnetic field. Because the above equations
separate J, and J,, the dimension of the matrix A, , for Eq. (7)
reduces to one-half of the matrix A,,, in Eq. (3), and the
computational tirne will be reduced. If both the x and v compo-
nents of the magnetic field are available as the input data, then
we can solve for J, and J, independently, without the aid of
the continuity condition. This is especially useful when the
current is not continuous everywhere in the plane and the ex-
pression for the current continuity equation cannot be deter-
mined experimentally.

However, the linear equations are usually either singular
or numerically close to singular, thereby preventing a simple
inversion of the corresponding matrix. Singular value decompo-
sition (SVD) [7] 1s a powerful technique used to deal with
matrices that are either singular or numerically close to singular.
The basic idea of SVD is that any M X N matrix A can be
written as the product of an M X N matrix U, an ¥ X N
diagonal matrix W with positive or zero elements (4;), and the
transpose of an N X N matrix V, i.e,,

A = U - [diag(A)] - V™. (11

The inverse of matrix A is

AT' =V [diag(1/a)] - U (12)
As long as A; is neither zero nor so small as 1o have an exces-
sively large reciprocal value (which would make the inverted
mairix dominated by the roundoff errors), Eq. (12) will give
the optimal inversion of the matrix in the least-squares sense.
Furthermore, if we constrain the current sources within the
correct boundary and impose the correct boundary conditions
on the current density, then the ill-conditioned matrices in the
linear equations (3), (8), and (9) will be improved. In the next
section, we simulate two types of current imaging problems:
one with a continuous current distribution and the other with
discontinuous current sources.

SIMULATIONS

Continuous Two-Dimensional Current Distribution

For simplicity, a bilinear finite element is used, and its inter-
polation function has the form [8]

Nix,y}=al + bix + by + dixy, (13

where af, b}, cf, and d} are the parameters specific to the kth

element. For convenience, we usually rewrite this interpolation
function in the natural coordinate system. If we denote x{, x%,
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vt, ¥4 as the coordinates for the kth element as shown in Fig.
1, then the interpolation functions can be written as

NHE )
B {%(1 =HA =y g ne[-1,1],7=1,2,34,
0 otherwise, j = 1, 2, 3, 4,
(14)
with
x—xt
&= o
_yoye
n= bk
S x— it
2
(15}
pt = Y1~
2
x4 a8
=
¢ 2
ﬂ:ﬂ+ﬁ
[ 2 .

Inside the kth element, the current distribution J can be ex-
pressed as

Y= $ENE + FENE + FLNE + 4N
Jf- = f-INif + é"i‘qNS + é",‘fﬁN‘i + §’§4N§-

(16)

Explicitly rewriting the continuity condition (Eq. {6)) in the
two-dimensional natural coordinate system, we obtain

8, 9 , ok, om _

17
a& ox dn ay 17

Substituting Eq. (16} into the above equation and sorting the
coefficients by the order of the polynomial, we obtain a polyno-
mial expression for the continuity equation

1
o (=35 + 30— 95+ F

1
+ E('ﬁ%: — 35+ Fht 35

(18}

1
+EE FhH—$n— 35+ }L)’?

1
@ T P It FE=0.
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" Since the coordinates £ and 7 are independent of each other,
each term of the polynomial must be individually zero to assure
that the continuity condition is satisfied in every element. Thus,
we obtain a set of equations governing the coefficients $% and

&y
1 k k k k
;(_gxl_‘-gr‘l_ x3+$x4)

!
+l_71(“§f-1_ ’;z'{‘gfz'{‘gfﬂ:(]
(19
(cﬂ\_ w— §3+3§4)=0

F - - +tHa=0

By incorporating the contimuity condition (Eq. (19)) into one
of the reconstruction eguations (Egs. (3), (8), or (9)), we can
obtain the images of the current density using only one compo-
nent of the magnetic field.

Since the finite element method can deal with each individual
element, any kind of boundary condition is easy to incorporaie
into the solution. For instance, a bounded current source nsually
will not allow current to flow out of the edge, which means
that the boundary condition is

Jra=20 20)
Because the interpolation functions in the finite element method
are designed so that the nodal values are simply the current
densities at the nodes, if the nodal values of the current compo-
nent normal to the edge are zero, then this boundary condition
is satisfied along that edge.

In order 1o compare quantitatively a current image with the
original distribution, we define a mean square deviation (MSD),

MSD, = f“l(x’ y) - Jimage(x, Y)[z dxdy
’ Ty dsdy

2D

When the original data is not available, the MSD is defined as

f [Bz(x% .V, ZO) - Bgt(xv y, ZG)P dXdy

MSD; =
i I BY(x, y, z) dxdy

(22)

As a simple example of this approach, we consider a 11.7
mm X 12.6 mm current loop as shown in Fig. 2. We calculate
the corresponding magnetic field measured at z = 1.5 mm for
X, ¥, and z components shown in Figs. 4a, 4b, and 4c, respec-
tively. The magnetic field is sampled over a 25 mm X 25 mm
area with 26 by 26 discrete points.

Assuming we have prior knowledge about the corrent source,
which contains the information about the geometry of the cur-
rent source and the boundary condition of Eq. (20}, we construct
the mesh shown in Fig. 3 to form the current space. The images
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FIG. 2. The simulated current source used to test the reconstruction algo-
rithne.

in Figs. 4b, 44, 4f show the current patterns reconstructed
individually by the finite element method from the magnetic
fields in Figs. 4a, 4c, and 4e, respectively. The MSDs for each
reconstruction from the x, y, and z components of the magnetic
field have been calculated and are listed in the caption of Fig.
4. Besides using the MSD to measure the quality of an image,
we also plot cross sections of the current density and compare
them to the original data (see Fig. 5). We observe that the
image with the larger MSD has greater distortion from the
original than one with the smaller MSD. Because the current
pattern is not exactly square, which means that B, is not totally
symmetrical to B,, the MSD for the reconstruction from B, will
not be equal to that from B,.

Since the normal component of the magnetic field is typically
measured by SQUID magnetometers, we will concentrate on
the algorithin using the z component of the magnetic field as
the only input data and compare it with the filtering technique.
Figure 6a shows the z component of the magnetic field data
used in the filtering technique to reconstruct the current pattern
shown in Fig. 6b; the MSD of 0.002] is better than the MSD
for the reconstruction by the FEM. Considering that the filtering
technigue uses many more data points (60 by 60 sampling in

L

FIG. 3. The grid used to section the current space comesponding to Fig. 2.

X
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F1G. 4. The magnetic field components produced by the current pattern
shown in Fig. 2 at z = 1.5 mm without noise and the corresponding reconstruc-
tions by FEM: (a) and (b) B, and iis image with MSD of 0.056; (¢) and (d)
B, and its image with MSD of 0.029; () and (f) B, and its image with MSD
of 0,026.

contrast to 26 by 26), its image quality should be higher than
that obtained by the finite element method. Due to the size
of the matrix in the finite element method, the number of
data points is limited by the memory capacity in our computer.
In an ideal case, when no noise is present in the data and
the data is recorded very close to the current source, the
filtering technique has the advantages of dealing with a large
amount of data quickly and obtaining an excellent result.
However, even a small amount of noise will reduce severely
the quality of the image produced by the filtering technigue,
producing cwrrent noise over the entire image plane, while
the finite element method controls the effects of the noise in
the magnetic field by limiting the current within the cor-
rect boundary.

To simulate the experimental data, noise levels of 5%
(SNR = 20) are added to the ideal magnetic field data. Figures
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7{a, b) show the resulis of the filtering technique and the finite
element method, respectively. The MSD for the result from the
filtering technigue (Fig. 7a) increases from 0.00218 to 0.133,
which means that even a 5% noise level will degrade the quality
of the image 60 times, as compared to the reconstruction from
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FIG. 5. The cross sections of the corrent images calculated from (a) B,;
{c) B,; (e) B; in Fig. 4. The solid lines are the criginal current densities, and
the dotted lines are the reconstructions.
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F1G. 6. The comparison between the unconstrained filtering technigue
(FT} and the constrained finite elemem method (FEM) from noise-frec data;
(a) The magnetic field (B,) produced by the current pattern of Fig, 2 at ¢ =
1.5 mm with no noise and sampling of 6 by 6{); (b) the reconstructions by
the FT; (¢) the same magnetic ficld data as shown in Fig, 6a with sampling
of 26 by 26; (d) the reconstructions by the FEM.

the noise-free data. In contrast, the MSD for the finite element
method (Fig. 7b} only increases from 0.026 to 0.040. With
the aid of prior knowledge about the current source, the
intrinsic singularity of the inverse calculation is reduced, and
the quality of the image is enhanced. The incorporation of
the prior knowledge of the current source in the finite element
method can also control the instability of the filtering technique
due to the large coil-to-source distance. When the magnetic
field data is recorded 3.0 mm away from the current sources
and without any noise in the input data, the quality of the
image culculated by the filteding technigue (Fig. 8a) decreases
from a MSD of 0.0022 to one of 0.077, which is 35 times
worse than that using the input data recorded at 1.5 mm.
Under the same conditions, the result of the finite element
method (Fig. 8b) remains very close to the original one, while
using many fewer inpul data points than the filtering technique.
The MSD is only 0.0267, which is 29% of the result for the
filtering technique.

Considering an extreme case where the magnetic field data
is measured at z = 3.0 mm with a 20% noise level (SNR =
5), the advantage of using prior knowledge is distinctly shown
in the results. Figure %a shows the result of the filtering tech-
nique with a MSD of (.42, For the finite element method, the
result is shown in Fig. 9b with a MSD of 0.12. The comparison
between the two techniques is summarized in Table L
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Discontinuous Two-Dimensional Current Sources

In the quasi-static state, current must be continuous in the
whole space. When we are only interested in the object studied,
we often encounter a discontinuous situation where the current
is flowing into the object at one place and flowing out at another.
An excellent example of a discontinuous, two-dimensional cur-
rent distribution is shown in Fig. 10; a 24.5 mm by 24.5 mm
homogeneous conducting plate has two electrodes located at
(2.25 mm, 12.25 mm) and (22.25 mm, 12.25 mm) that inject
and remove, respectively, a | mA current into the conducting
plate via perpendicular wires. Because the wires are perpendicu-
lar to the plane, as is the measured component of the magnetic
field, the current in the wires does not contribute to the mag-
netic map.

The current distribution in the plate is a classic electrostatic
problem in which the electric potential ¢ of the conducting
plate obeys the two-dimensional Poisson equation

Vi = V&(r — r)) — Vé(r — ), (23)
with the boundary condition
Vo -i=0, 24)

where the coefficient V in Eq. (23) depends on the magnitude
of the injected current and the resistance of the conducting
plate, and r, and r; are the positions of the electrodes. After
the electric potential ¢ is obtained from Poisson’s equation,
we can determine the current distribution in the conducting
plate by taking the derivative of the potential with respect to
x and y. Since we are examining a conducting plate of finite
size, we can readily obtain the numerical solution to Eq. (23)
by using the finite element technique, with the result shown in
Fig. 11a. The corresponding magnetic field as would be mea-
sured at 1.5 mm above the plate is shown in Fig. 11b. From
the calculated magnetic field data, we will try to reconstruct
the current image of the original current distribution by, first,
the filtering technique and, then, the finite element method.
Figure 12b shows the current image using the unconstrained
filtering technique. The unacceptable spreading of the image
as compared to the original distribution in Fig. 12a is obvious.
We can avoid this by utilizing our knowledge of the geometry
to constrain the current patterns. As before, we first establish
a mesh according to the geometry of the object. Second, by
substituting the boundary conditions into the finite element
equations, we can further reduce the singularity and force the
solution to closely approximate the real current distribution.
The continuity condition becomes
V-J=Vdr—r)— Vir — ). (25)
For the continuous elements, the continuity condition expressed
in the finite element interpolation functions has the same form
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FIG. 7. ‘The reconstructions by the FT and the FEM at z = 1.5 mm with SNR = 20. The magnetic field is calculated at z = 1.5 mm and the SNR = 20:
{(a) by the FT; (b) by the FEM; {(c) the cross section of J, by the FT; (d) the cross section of J, by the FEM.

as was expressed in Eq. (19). For the element containing the
discontinuous points, the continuity equation becomes

1 .
E(_cﬂl + $5 — Fh 4+ L)

i
+;I(_g'f-1— §2+c§pfl+gl§4)= *TA

’;1_ fz_ §3+§f4)=0

F— I - Fs+F)=0.

By using the SVD algorithm, we find the most likely solution
for this overdetermined system. The image of the current source
is shown in Fig. 13a and its MSD is 0.13. From the correspond-
ing cross sections in Fig. 14, we notice that the carrent density

around the injecting points is more distorted than those in
other positions.

We know that the finite element interpolation function can
interpolate the continuous functions to any degree of approxi-
matton, depending on the orders of the elements. Since the
interpolation functions are continuous, they are not well suited
to approximate a discontinuous function. The usual soluticn to
this problem is to refine the mesh near the discontinuity imposed
by the current-injecting electrodes, so that a large number of
small elements (either 3-node triangular elements or higher-
order quadrilateral ones) are concentrated in regions of high
potential gradients. Depending upon the accuracy required near
the electrodes, the total number of elements in the problem can
easily be doubled or tripled. In our case, for which we are
interested in inverting the finite-element matrix to obtain an
inverse image, this would increase the size and complexity of
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mA/m

FIG. 8. The reconstructions by the FT and the FEM at z = 3.0 mm with SNR = 0. The magnetic field is calculated at z = 3.0 mm and the SNR = oo;
(a) by the FT; (b) by the FEM; (c} the cross section of J, by the FT; (d) the cross section of J, by the FEM.

the matrix to be inverted by singular value decomposition.
We have devised an alternative approach that allows us to
maintain a uniform, rectangular mesh. We separate the current
distribution into two parts: one that is related to the divergent
component J; and the other that is the divergence-free compo-
nent J., i.e.,

J = Jd + Jc- (27)

The divergent part can be expressed by some known discontinu-
ous functions J,(r) whose forms depend on the individual prob-
lem. The divergence-free part J. is chosen by the finite element
method so that the summation of the two parts produces the
same magnetic field as measured and also satisfies the correct
boundary condition.

For the current pattern discussed in this paper, the choice
for the divergent part is obviously the analytical solution for
an infinite, two-dimensional plate with two electrodes located
at the same positions, whose potential is given by [9]

¢ = Vlog V(x — ;2 + (y — n)?

(28)
— Viog Vix — ) + (y — )
The corresponding current density can be calculated as
_ %
S = dx
V * - V * — X2
_ 2(x X)) - 2()c x) 29
-—x)y+ -y G-ty
-2
Iy = 3y
V - _— V . —
SR, (y —») 30)

TEmxP ) Gom (-

Then the deconvolution problem becomes that of trying to find
the divergence-free component J, so that the total current J will
preduce the correct magnetic field while satisfying both the
boundary condition,
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FIG. 9. The reconstructions by the FT and the FEM at z = 3.0 mm with SNR = 5. The magnetic
(a) by the FT; (b) by the FEM: (c} the cross section of J, by the FT; (d) the cross section of J, by the FEM.

(1)

A =0,

(Ju.+ 1)

TABLE 1
The Comparison of FT and FEM for the Continuous

and also the continuity condition,

Current Pattern

Vo(r —r) — Va(r — r.) (32)
(33

V'Jd:

30 30

1.5
20

L5

z (mm)
SNR

V-J. =0

0.077 042
0.12

0.13

0.0021
0.026

MSD for FT

0.027

0.040

MSD for FEM

Figure 13b shows the results of deconvolution, for which
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FIG. 10. A homogeneous conducting plate with two electrodes located at
ry and ¥,

the MSD is reduced to 0.068. Comparing the result from the
filtering technique with the original current image (Fig. 12a),
we see that the corresponding MSD for the filtering techniques
of 0.44 is seven times worse than the results of the two-part
finite element method.

In the particular example we present, we only measure B,
and, hence, we do need a priori knowledge of the location of
the current injection electrodes, since those are the points where
there is a discontinuity of the current in the plane and, hence,
are where Eq. (6), required for the solutions of Eqgs. (4) and
(5}, is not valid. To not know the location of the current injection
points presents an added experimental complication, in that
measurement of B, alone is insufficient to obtain an exact in-
verse solution. As discussed earlier, this restraint could be
relaxed by measuring the B, and B, field components. If a
priori knowledge of the current injection sites and the analytical
solution were not used, it may be possible to use adaptive mesh
refinement techniques to minimize the effect of the discontinu-
ities, but then it would be necessary to devise tests tor their
presence. As the goal of the present study was to devise tech-
niques to incorporate as much a priori knowledge into the
inverse solution as is possible, we find the combined finite-
element/analytical approach ideally suited to incorporate both
the edge boundary condition (Eq, (20)) and that for point injec-
tion of current (Eq. (25)) while using a simple finite element
mesh. Both approaches can be applied to planar samples of
irregular shape. '
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THE DETECTION OF THE INHOMOGENEOUS
CONDUCTIVITY OF TWO-DIMENSIONAL OBJECTS

Once we have reconstructed the current image from the
magnetic field data, we can use the current image to obtain
information about the object that is not readily apparent in the
magnetic field data. For the z component of the magnetic field,
we had that

Bf(x! ,V)
_ o (LAY =y — Sy — X)) dx” dy'
4m [(x =XV 4+ (y — ¥y + 2P '

(34)

By using a partial integration, we can rewrite the above equation
as [10]

fo (IO AU po [ (VX J()), dx’ dy’

B = r—r| 4w r—r|

(35)

According to Ohm’s law,

10 mm b

FI1G. 11.  The test current pattern for the FEM and the FT: (a) The original
current distribution of the conducting plate shown in Fig. 10; (b} the magnetic
field B, calculated at z = 1.5 mm without any noise (1.3 nT contours).
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FiG. 12. The comparison of the original pattern and the reconstruction
by the filtering technique (FT): {a) The original current distribution; (b) the
reconstruction by the FT, with MSD of 0.44.

J=0Ve (36)
and
VX J=V X (aVe)

=Voax V¢ (37)

so that we can rewrite Eq. (35) as

_ o ) AU

B{r) = 4t r—r|

(38)

oy (SE) Vo X 1), dx' dy’
47 Ir —¢'| '

If Vo = 0, which means the conductivity of the object is
homogeneous and isotropic, then the magnetic field only de-
pends on the current at the edge

#o [ Jr') - dl’

BZ(r):Z’?T 5 Ir_r1| .

(39)
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FIG. 13. The reconstructions by the FEM for the discontinuous current
distribution: (a) By the regular FEM, with MSD of 0.13; (b) by the adapted
FEM, with MSD of 0.06.

FIG. 14. The cross sections in two positions of the reconstructions in Fig.
13. The solid line represents the original current pattern and the dotted line is
for the reconstruction: (a) and (b) by the regular FEM; (c) and (d} by the
adapted FEM; (a) and (c) the cross section at y = 0; (b) and (d) the cross
section at x = 0.
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FIG.15. The magnetic field due to the current on the edge of the conducting
plate: {a) The magnetic fiekd due to the contribution of original current on the
edge; (b) the magnetic field due to the contribution of the edge of the recon-
structed current image (1.3 nT contours).

To verify this formula, we evaluate the line integral of the
original current distribution shown in Fig. 11a along the edge
to calculate the magnetic field. The corresponding result is
shown in Fig. 15a, which is identical, within the numerical
precision of the calculation, to the result calculated by the law
of Biot-Savart (Fig. 11b).

This observation reveals an approach to characterize the
inhomogeneities or the anisotropies in an object from the mea-
sured magnetic field data. Since the finite element method can
recover current distributions within a bounded region, the cur-
rent density on the edge of an object is retrievable from the
current image. If the object is homogeneous and isotropic, then
the results of Eq. (39} should agree with the recorded magnetic
field within reasonable accuracy. On the other hand, if the
conductivity of the object is either inhomogeneous or aniso-
iropic, the line integral of the computed current along the edge
of a homogeneous finite element grid should produce a different
magnetic field pattern than the measured one,
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We use the reconstructed current (Fig. 13a) to calculate the
line integral in Eq. (39). The result shown in Fig. 15b matches
the calculated magnetic field (Fig. 1 1b) perfectly. This confirms
that our modeled conducting plate is homogeneous and isotropic
because the result of the linear integral of Eq. (39) is equal to
the measured magnetic field.

Let us now consider an inhomogeneous 26 mm X 26 mm
conducting plate as shown in Fig. 16, whose conductivity (o)
in the upper half is twice that (o) in the lower half. If the
voltages (= V) are applied at both sides of the plate as indicated
in Fig. 16, then the corresponding Laplace’s equation will be

az(rbl 2 azd)'l 2
' ~=10, 40
ax? ay? “0)
with the boundary conditions of
b= +V ifx=—-al2 41
¢!‘2 = _V ifx = +al2 (42)
9 il
L R (43)
dx ox

where a is the width of the plate. By solving the above equation
we find that the associated current distribution in region one
(J:) and region two (J,) are

2nV
J1= i i)
il
(a4)
20'sz
Jzz i,
a

Figure 17a shows the current pattern calculated by Eq. (44)
and the corresponding magnetic field is shown in Fig. 17b.
Assuming we know the size of the conducting plate, we recon-
struct the original current pattern by using the finite element
method. The imaging current has a MSD of 0.0024 and is
shown in Fig. i7c.

a=26 mm

edge at .
region one

" 2 g P

edge at
-V

region two

gz b2

FIG. 16. A schematic representation of the simulated, finite inhomoge-
neous conducting plate,
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y,m

FIG. 17. The forward and inverse calculations for the inhomogeneous
conducting plate in Fig. 16: (a) The original current distribution; (b) the associ-
ated magnetic field; (¢) the reconsirucied current pattern.

When we perform the line integral in Eq. (39) for the original
current pattern, we find that the magnetic field due to the actual
current on the edges (Fig. 18b) is clearly different from the
actual magnetic field shown in Fig. 18a. The result of the line
integral of Eq. (39) for the reconstructed current pattern (Fig.
18c) also presents these different contours and is in agreement
with the image from the line integral. This is clear evidence
that for inhomogeneous conducting media, the line integral
along the edges will not give the actual magnetic field, while
for a homogeneous object it does. We can go one step further
and look at the difference between the actual field and that
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due to the edges, as shown in Fig. 18d. This difference field
unambiguously indicates the presence of the internal disconti-
nuity at the middle of the object and suggests that this process
can be used to eliminate edge etfects while searching for flaws
in otherwise homogeneous, bounded objects.

CONCLUSIONS

From these calculations, we conclude that the finite element
method is an excellent technique to deconvolve a bounded
current source, by constraining the current image within the
certain region. Frequently we know the geometry of the object
we need to reconstruct. By using this geometry as a constraint
condition for the model, we eliminate many uncertain points
that would otherwise degrade the inverse solution and, thereby,
both improve the resolution and reduce the mean-square devia-
tion of the fitted data from the original data. On the other hand,
if we do not utilize this constraint condition, the reconstruction
grid will most likely extend beyond the current space. As a
result, for the portion of grid outside the current source, the
corresponding nodal values are zero, which means there are
more zero solutions in Eq. (8) and the ill-conditioned matrix
A is more singular. With the aid of prior information about the
current sources, we can construct an optimumn finite element
mesh to reduce the intrinsic singularity in the inverse calcu-
lation.

Furthermore, for the current imaging problem, we have addi-
tional constraints on the current pattern, such as specific bound-
ary conditions and continuity of current at the current sources
and sinks. By using the finite element method, we can incorpo-
rate all of these constraints into the current image and, thereby,
improve the quality of the image. The finite element method
is a general approach that can be nsed in other inverse imaging
techniques and readily allows the inclusion of a priori informa-
tion to minimize the effects of the intrinsic ill-conditioned
nature of the inverse imaging problem.

In this anaiysis, we have used our own implementation of
the standard finite element approach [8] to sclve the forward
problem of calculating the expected current and field distribu-
tions for a given sample and curent-injection geomeiry, and
we have shown how the finite element equations can be soived
using singular value decomposition to provide a constrained
finite-element solution to the inverse problem of determining
the current distribution from the measured field map given a
priori knowledge of the sample geometry and electrode config-
uration. Commercial finite element programs could be readily
used for the forward calculations; if such programs provide
access to the matrices containing the coefficients for the interpo-
lation functions, our constrained SVD inverse techniques could
then be applied. This would offer the possible advantage of
allowing the use of more complex mesh geometries than might
be attempted with a simple finite element program.

Dependent upon the number of field measurements obtained
and the stability of the SVD inverse, it may be possible to
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FiG. 18. The comparison of the actual magnetic field and the field due to the current on the edges: (a) the actual magnetic field from Fig, 17h {63 pT
contours); (b} the magoetic field due to the original current on the edges {63 pT contours); (¢} the magnetic field dve to the image ¢urrent on the edges (63
pT contours); {d) the difference between the actual magnetic field and that dve to the image current at the edges (21 pT contounrs).

extend this approach to nonplanar current distributions. We
have also shown [6] that measurements covering only a fraction
of the source region can still provide adequate information
to reconstruct the entire source distribution, but with reduced
accuracy. However, we do not expect that our finite-element
inverse approach can be applied to the general, three-dimen-
sional magnetic inverse problem, in which one would like to
use measurements of the magnetic field outside the sample 0
obtain a description of an arbitrary, three-dimensional current
distribution within it. Because of the existence of magnetically
silent current distributions [11], this problem has na unique
solution and it is unlikely that our SVD approach would produce
a meaningful solution without additional constraints on the
current distribution.
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